

Shop No 50,1St Floor Thanjavur Bypass Road Trichy TamilNadu

www.tedpro.org

IEEE - EEE Projects

	Z-SOURCE CONVERTER:					
	1. A Single-phase PV Quasi-Z-source Inverter with Reduced Capacitance using Modified					
TEDEE01	Modulation and Double-Frequency Ripple Suppression Control					
	2. A Novel Quasi-Z-Source Inverter Topology With Special Coupled Inductors For					
TEDEE02	Input Current Ripples Cancellation.					
	SOLAR MPPT SYSTEM:					
TEDEE03	1. Energy Storage System from DC Bus with Port for Solar Module					
	2. A Novel Control Strategy for Stand-alone Solar PV Systems with Enhanced Battery					
TEDEE04	Life					
	BLDC MOTOR:					
	1. A Torque Ripple Compensation Technique for a Low Cost Brushless					
TEDEE05	DCMotor Drive					
	2. Position Sensorless Control without Phase Shifter for High-					
TEDEE06	speed BLDCMotors with Low Inductance and Nonideal Back EMF					

	INDUCTION MOTOR:
	1. Advanced Integrated Modeling and Analysis for Adjustable Speed Drives
TEDEE07	ofInduction Motors Operating With Minimum Losses
	2. A New Formulation of Reactive Power Based Model Reference Adaptive System
TEDEE08	for Sensorless Induction Motor Drive
	3. Simple Flux Regulation for Improving State Estimation at Very Low and Zero
TEDEE09	Speed of a Speed Sensorless Direct Torque Control of InductionMotor Drive
	POWER OUALITY AND HARMONICS FILTERINGS:
	1. A PLL-Less Scheme for Single-Phase Grid Interfaced Load Compensating Solar
TEDEE10	PV Generation System
	2. A Filtering Scheme to Reduce the Penetration of Harmonics Into Transmission
TEDEE11	Systems
	3. Power Factor Corrected Zeta Converter Based Improved Power QualitySwitched
TEDEE12	Mode Power Supply
TEDEE13	4. A Synchronization Method for Single-Phase Grid-Tied Inverters
	5. Variable Forgetting Factor Recursive Least Square Control Algorithm for
TEDEE14	DSTATCOM
	6. A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an
TEDEE15	Islanded Microgrid
	PFC CONVERTERS:
	1. Efficient Single-Switch Boost-Dual-Input Flyback PFC Converter with Reduced
TEDEE16	Switching Loss
TEDEE17	2. Implementation of Bridgeless Cuk Power Factor Corrector with Positive Output

	Voltage				
	3. Design of AC-DC PFC High-Order Converters with Regulated Output Current for				
TEDEE18	Low Power Applications				
TEDEE19	4. A High Voltage SiC-based Boost PFC for LED Applications				
	5. Power Factor Corrected Zeta Converter Based Improved Power Quality Switched				
TEDEE20	Mode Power Supply				
TEDEE21	6. Line Current Distortion Compensation for DCM/CRM Boost PFCConverters				
	7. PIC-Based Interleaved Buck Power Factor Corrector With Adaptive Slope				
TEDEE22	Compensation				
	8. A Novel Control Scheme of Quasi-Resonant Valley-Switching for High-Power-				
TEDEE23	Factor AC-to-DC LED Drivers				
	9. A Bridgeless BHB ZVS-PWM AC-AC Converter for High-Frequency Induction				
TEDEE24	Heating Applications				
	MULTI LEVEL INVERTER:				
TEDEE25	1. A Fault Tolerant Single Phase Five-level Inverter for Grid Independent PV systems				
	2. An Energy Stored Quasi-Z Source Cascade Multilevel Inverter based Photovoltaic				
TEDEE26	Power Generation System				
	3. A new switching scheme for a new multi level inverter topology for grid connected				
TEDEE27	PV systems				
	4. Implementation of SVM to improve the performance of a nine level inverter with				
TEDEE28	reduced number of switches				
	5. Optimal Low Switching Frequency Pulsewidth Modulation of Nine-				
TEDEE29	LevelCascade Inverter				
	6. An Innovative Scheme of Symmetric Multilevel Voltage Source Inverter with				
TEDEE30	Lower Number of Circuit Devices				

	1. Resonant Converter With Resonant-Voltage-Multiplier Rectifier and Constant					
TEDEE31	requency Phase-Shift Control For Isolated Buck-Boost Power Conversion					
	2. Analysis and Design of Single-Switch Forward-Flyback Two-Channel LED Driver					
TEDEE32	vith Resonant-Blocking Capacitor					
	3. Efficiency Optimization of LLC Resonant Converters Operating in Wide Input-					
TEDEE33	and/or Output-Voltage Range by On-the-Fly Topology-Morphing					
	4. Flying-Capacitor Based Hybrid LLC Converters with Input Voltage Auto-Balance					
TEDEE34	Ability for High Voltage Applications					
	5. Proportional-Resonant Current Controllers Design Based on Desired Transient					
TEDEE35	Performance					
	6. DCM-based Zero-Voltage Switching Control of a Bidirectional DC-DC					
TEDEE36	Converter With Variable Switching Frequency					
	7. Operating Conditions Monitoring for High Power Density and Cost-					
TEDEE37	Effective Resonant Power Converters					
	8. Analysis and Parameter Optimization of Start-up Process for LLC Resonant					
TEDEE38	Converter					
TEDEE39	9. A Zero-Voltage-Transition Bidirectional DC/DC Converter					
TEDEE40	10.Study on the Single-stage Forward-flyback PFC Converter with QR Control					
	WIND ENERGY CONVERSION SYSTEM:					
TEDEE41	1. Split Converter-Fed SRM Drive for Flexible Charging in EV/HEV Applications					
	2. Contribution of VSC-HVDC to Frequency Regulation of Power SystemsWith					
TEDEE42	Offshore Wind Generation					
	3. A Discrete-Time Direct Torque Control for Direct-Drive PMSG-					
TEDEE43	Based WindEnergy Conversion Systems					
	4. A Single Sensor Based MPPT Controller for Wind-Driven Induction Generators					
TEDEE44	Supplying DC Microgrid					

	5. Wound Rotor Machine With Single-Phase Stator and Three-Phase					
TEDEE45	RotorWindings Controlled by Isolated Three-Phase Inverter					
	6. Using Improved Power Electronics Modeling and Turbine Control to					
TEDEE46	Improve Wind Turbine Reliability					
TEDEE47	7. On the Design and Capacity of Grounding Systems for Grid-Connected DGUs					
	8. Maximum Power Point Tracking Strategy for Large-					
TEDEE48	Scale Wind GenerationSystems Considering Wind Turbine Dynamics					
	9. Reinforcement Learning-Based Intelligent Maximum Power Point Tracking Control					
TEDEE49	for Wind Energy Conversion Systems					
	FACTS CONTROL:					
	1. Individual Phase Current Control Based on Optimal Zero Sequence Current					
TEDEE50	Separation for a Star-Connected Cascade STATCOM under Unbalanced Conditions					
	2. Reduced Capacitance Thin-Film H-Bridge					
TEDEE51	Multilevel STATCOM ControlUtilizing an Analytic Filtering Scheme					
TEDEE52	3. Modulation and Control of Transformer-less UPFC					
	4. An Integrated Dynamic Voltage Restorer-Ultracapacitor Design for					
TEDEE53	Improving Power Quality of the Distribution Grid					
	5. Dynamic Voltage Restorer Based on Three-Phases Inverters Cascaded					
TEDEE54	Through an Open-End Winding Transformer					
	6. Shunt Active Power Filter With Open-End Winding Transformer					
TEDEE55	and Series-Connected Converters					
	HYBRID CONVERTERS:					
TEDEE56	1. Performance Analysis of Bidirectional DC–DC Converters for Electric Vehicles					
TEDEE57	2. Robust Global Stabilization of the DC-DC Boost Converter via HybridControl					
	3. Design, Operation and Control of S3 Inverter for Single-Phase Micro-Grid					
TEDEE58	Applications					
TEDEE59	4. Analysis of CLL Resonant Converter with Semi Bridgeless Active Rectifier					

	and Hybrid Control				
TEDEE60		5.	A New Hybrid Boosting Converter (HBC) for Renewable Energy Applications		
		6.	High Gain Zero Voltage Switching Bidirectional converter with reduced number of		
TEDEE61	switches				
TEDEE62		7.	The Hybrid-Cascaded DC–DC Converters Suitable for HVdc Applications		